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Mixtures of multiple testing procedures
for gatekeeping applications in clinical
trials
Alex Dmitrienkoa∗† and Ajit C. Tamhaneb

This paper proposes a general framework for constructing gatekeeping procedures for clinical trials with
hierarchical objectives. Such problems frequently exhibit complex structures including multiple families of
hypotheses and logical restrictions. The proposed framework is based on combining multiple procedures
across families. It enables the construction of powerful and flexible gatekeeping procedures that account for
general logical restrictions among the hypotheses of interest. A clinical trial in patients with schizophrenia is
used to illustrate the approach for parallel gatekeeping, whereas another clinical trial in patients with hyper-
tension is used to illustrate the approach for gatekeeping with general logical restrictions. Copyright © 2011
John Wiley & Sons, Ltd.
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1. Introduction

Gatekeeping procedures address the problems of testing hierarchically ordered and logically related
null hypotheses that arise in clinical trials involving multiple endpoints, multiple doses, noninferiority–
superiority tests, subgroup analyses, etc. Because of the practical importance of these problems, gate-
keeping procedures have become an active area of research since the past decade; see Dmitrienko and
Tamhane [1, 2] for recent reviews. Much of this work deals with the so-called serial and parallel gate-
keeping procedures, and their generalization to the so-called tree-structured gatekeeping procedures.
The goal of the present paper is to provide a powerful method for constructing gatekeeping procedures,
especially in the case where there are general logical restrictions among the null hypotheses that are
outside the scope of tree-structured gatekeeping restrictions.

Consider a clinical trial with multiple objectives that can be classified into primary objectives (e.g.
primary endpoints), secondary objectives (e.g. secondary endpoints) and possibly other, less important
objectives. Suppose there are k�2 hypotheses associated with all these objectives. To account for
the hierarchical structure of these objectives, the hypotheses are grouped into m�2 ordered families,
F1, . . . , Fm , with k1, . . . ,km hypotheses, respectively, such that

∑m
i=1 ki =k. In serial gatekeeping, the

hypotheses in Fi+1 are tested if and only if (iff) all the hypotheses in Fi are rejected, whereas in
parallel gatekeeping the hypotheses in Fi+1 are tested iff at least one hypothesis in Fi is rejected. If
the appropriate condition is not met then all hypotheses in Fj for j>i are accepted without testing.
Thus Fi serves as a gatekeeper for families Fj for j>i . Serial gatekeeping procedures were studied
by Maurer et al. [3], Bauer et al. [4] and Westfall and Krishen [5], whereas Dmitrienko et al. [6] were
the first to study parallel gatekeeping procedures.
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Further research in this area was conducted along two directions. In the first direction, Dmitrienko
et al. [7, 8] generalized serial and parallel gatekeeping procedures, which assume a simple set of logical
restrictions among the hypotheses, to the tree-structured gatekeeping procedures. In these procedures,
the decision to test any particular null hypothesis in Fi for i>1 or to accept it without a test is conditional
on rejection of all hypotheses from one subset of hypotheses (called a serial rejection set) and rejection
of at least one hypothesis from another subset of hypotheses (called a parallel rejection set) from
F1, . . . , Fi−1 (one of these rejection sets may be empty). Dmitrienko et al. [7] derived procedures to
deal with these tree-structured gatekeeping restrictions using the closure method of Marcus et al. [9]
based on the Bonferroni procedure as the local test for each intersection hypothesis. Bretz et al. [10]
used a graphical approach and Burman et al. [11] used a closely related recycling approach to construct
Bonferroni-based gatekeeping procedures with general logical relationships among the hypotheses.

In the second direction, Dmitrienko et al. [12] considered the problem of building multistage parallel
gatekeeping procedures based on the procedures that are more powerful than the Bonferroni procedure.
They introduced a general method for this purpose derived from a broad class of the so-called separable
procedures (explained in the sequel) using the notion of the error rate function. This general method
eliminates the need to use the closure method thus simplifying the computations.

These previous works have certain limitations, however. First, the tree-structured gatekeeping
approach is designed to use only the Bonferroni procedures. Second, although the framework introduced
in [12] uses more powerful separable procedures than the Bonferroni procedures used in [13, 14], it
can only deal with parallel gatekeeping restrictions. In the present paper, we propose a new approach
for constructing gatekeeping procedures that not only overcome these limitations, thus yielding more
powerful procedures, but also extend their applicability to general logical restrictions which are not
representable in the tree-structured gatekeeping framework.

The new approach is based on mixtures of multiple testing procedures. The term mixture is used here to
make an analogy with a mixture of distributions [15]. To specify a mixture distribution, one needs to
specify component distributions and a mixing distribution. Similarly, in the case of a mixture procedure,
one needs to specify component procedures and a mixing function. Mixtures of multiple testing proce-
dures were implicitly used as a tool for building gatekeeping procedures in other papers, e.g. mixtures
of the Dunnett procedures were considered in [16, 17], the tree-structured gatekeeping approach in
[7, 8] was based on mixtures of the Bonferroni procedures and the algorithm for constructing multistage
parallel gatekeeping procedures [12] employed mixtures of general multiple testing procedures.

To introduce mixture procedures, we have chosen to restrict to the simple setting of two families,
F1 and F2, in the present paper. We will refer to F1 and F2 as the primary and secondary families and
their corresponding hypotheses as the primary and secondary null hypotheses, respectively. Multiple
families pose no new conceptual problems but involve more complicated notation and arguments. In
the present paper, we will focus on the procedures and not on their properties. The theory of mixture
procedures for multiple families and their properties will be studied in a separate paper.

All procedures considered in this paper will be assumed to satisfy the following strong familywise
error rate (FWER) control requirement [18, 19]:

FWER= P(Reject at least one true null hypothesis)��

for a specified � for any combination of the true and false null hypotheses. In addition, gatekeeping
procedures are generally required to satisfy the desirable property of independence [6] which states
that inferences on the hypotheses in any family Fi must not depend on the test statistics or the p-values
of the hypotheses in family Fj for j>i . In the case of two families considered in this paper, the
independence condition implies that inferences on the hypotheses in family F1 do not depend on the
inferences on the hypotheses in family F2.

The outline of this paper is as follows. Section 2 introduces the mixture procedures in the simple
setting of parallel gatekeeping. Section 3 extends the mixture framework to general monotone gate-
keeping restrictions through the so-called restriction functions. Clinical trial examples are given in
Sections 2 and 3 to illustrate mixture procedures for parallel and general gatekeeping restrictions.
Section 4 gives the concluding remarks.

2. Mixture procedures for parallel gatekeeping restrictions

We will use the following example involving subgroup analyses to illustrate the procedures for parallel
gatekeeping. Consider a parallel-group clinical trial in patients with schizophrenia which is conducted to
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Figure 1. Decision tree in the schizophrenia trial example with parallel gatekeeping restrictions (the secondary
null hypotheses H3 and H4 are tested iff at least one primary null hypothesis, i.e. H1 or H2, is rejected).

evaluate the efficacy profiles of two doses of a treatment (Dose 1: low dose; Dose 2: high dose) compared
with that of a placebo in a general population of patients as well as in a prespecified subpopulation
(subgroup) defined by a genotypic classifier. Suppose that the primary efficacy endpoint is continuous
and the treatment effect is defined to be the mean difference between each dose and placebo. Let �i
and �′

i denote the true mean differences for the comparison between the i th dose and placebo in the
general population and subpopulation of classifier-positive patients, respectively (i =1,2). The primary
family F1 consists of the null hypotheses of no treatment effect in the general population, i.e.

H1 :�1 =0, H2 :�2 =0, (1)

and the secondary family F2 consists of the null hypotheses of no treatment effect in the sub-
population, i.e.

H3 :�′
1 =0, H4 :�′

2 =0. (2)

The decision tree used in this clinical trial is displayed in Figure 1. The secondary null hypotheses
are tested iff at least one primary null hypothesis is rejected, i.e. there is evidence of a beneficial
treatment effect in at least one dose group in the general population. Thus the primary family serves
as a parallel gatekeeper for the secondary family.

We now discuss how to set up mixture procedures for parallel gatekeeping with arbitrary numbers
of hypotheses in each of two families.

2.1. Mixture procedures

Consider the general problem of testing k�2 null hypotheses grouped into two families, F1 with k1
primary null hypotheses and F2 with k2 secondary null hypotheses, where F1 serves as a parallel
gatekeeper for F2 and k1 +k2 =k. The procedures used in the primary and secondary families will
be termed component procedures and denoted by P1 and P2, respectively. We assume that each Pi
is a closed testing procedure which controls the FWER within Fi at a prespecified �i level (i =1,2)
and P1 is a separable procedure [12]. The class of separable procedures includes the Bonferroni and
single-step Dunnett [20] procedures. Popular stepwise procedures such as the Holm [21], Hochberg
[22], Wiens’ fallback [23, 24], step-up Dunnett [25] and step-down Dunnett [26] are not separable.
However, they can be made separable by applying them using convex combinations of their critical
values with those of one of the separable procedures, e.g. Bonferroni for Holm, Hochberg, and fallback,
and single-step Dunnett for step-up and step-down Dunnett. The resulting procedures are referred to
as truncated procedures and their properties are discussed in [12].

We are interested in constructing a mixture procedure P from P1 and P2 for testing the null
hypotheses in the combined family F = F1 ∪ F2 such that P controls the FWER with respect to all k
null hypotheses. We use the closure method to set up P.

Let

K1 ={1, . . . ,k1}, K2 ={k1 +1, . . . ,k1 +k2}, K = K1 ∪K2 ={1, . . . ,k}
be the index sets of the null hypotheses in F1, F2 and F , respectively. Consider closed families
associated with the primary and secondary families of null hypotheses. A closed family for Fi (i =1,2)
consists of all nonempty intersections of the null hypotheses in Fi . Let

H (Ii )=∩ j∈Ii H j

denote an intersection hypothesis, where Ii ⊆ Ki is the index set of the null hypotheses included in
H (Ii ). Let pi (Ii ) denote the local p-value for testing the intersection hypothesis H (Ii ). This p-value
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defines a local test for this intersection hypothesis. Recall that the component procedure Pi is a closed
testing procedure and thus each local test is an �-level test. For example, if Pi is the Holm procedure
then the local test of H (Ii ) is the Bonferroni test and

pi (Ii )=|Ii |min
j∈Ii

(p j ), (3)

where |Ii | is the cardinality of the index set Ii and p j is the raw p-value for Hj .
For given �, the error rate function of P1 is defined as

e1(I1|�)= P{p1(I1)��|H (I1)}.
If this probability depends upon the false null hypotheses Hi , i �∈ I1 then we take the supremum of
the probability over all configurations such that Hi , i ∈ I1 are true and Hi , i �∈ I1 are false. As P1 is a
separable procedure, we have e1(I1|�)�� for all I1 ⊆ K1 with equality holding iff I1 = K1. Note that
e1(I1|�) is a monotone function, i.e. e1(I1|�)�e1(I ′

1|�) if I1 ⊆ I ′
1. Generally, an exact expression for the

error rate function of any procedure is difficult to obtain and hence we use an easily computable upper
bound, which we treat as the actual error rate function of that procedure. For example, if P1 is the
Bonferroni procedure, then we use e1(I1|�)=|I1|�/k1. Error rate functions of some popular procedures
were derived in [12].

To define the mixture procedure P for all null hypotheses in the combined family F , consider the
associated closed family. Let I be a nonempty subset of K such that I = I1 ∪ I2, where I1 ⊆ K1 and
I2 ⊆ K2 are the primary and secondary index sets at least one of which is nonempty. Let H (I )=∩i∈I Hi
denote an intersection hypothesis. P is a closed procedure with a local test of level � of each intersection
hypothesis H (I ) defined as follows:‡

Reject H (I ) if

{
pi (Ii )�� if I = Ii (i =1,2),

�I (p1(I1), p2(I2))�� if I = I1 ∪ I2, I1 and I2 are nonempty.
(4)

In other words, if the intersection hypothesis H (I ) contains only primary or secondary null hypotheses
(I = I1 or I = I2), the decision rule for H (I ) is directly based on the local test associated with
the corresponding component procedure. Further, if both primary or secondary null hypotheses are
included in H (I ) (I = I1 ∪ I2), the decision rule is constructed by combining the local tests associ-
ated with the primary and secondary component procedures P1 and P2 based on the mixing function
�I (p1(I1), p2(I2)). The mixing function is defined over the interval (0,1) such that the local test of
H (I ) is an �-level test, i.e.

P{�I (p1(I1), p2(I2))��|H (I )}��. (5)

In addition, we require that

�I (p1(I1), p2(I2))�p1(I1). (6)

This property guarantees that the mixture procedure P is equivalent to P1 within F1 and thus it
satisfies the independence condition, i.e. the inferences in the primary family will not be affected by the
inferences in the secondary family. Using the closure principle, P rejects any individual null hypothesis
Hi at multiple level � iff all H (I ) such that i ∈ I are rejected using their local tests (4).

We consider a class of mixing functions of the following general form:

�I (p1(I1), p2(I2))=min

(
p1(I1),

p2(I2)

c(I1, I2|�)

)
, (7)

where c(I1, I2|�) is a coefficient that, in general, depends on the subsets I1, I2 and on �. It satisfies
0�c(I1, I2|�)�1. The last inequality ensures that the secondary hypotheses are less important than
the primary hypotheses, i.e. p2(I2) receives a weight less than or equal to the weight of 1 on p1(I1).
Different mixing functions differ in their choice of c(I1, I2|�) which is chosen to satisfy (5). We will
consider two mixing functions: Bonferroni and parametric. They are defined in Sections 2.2 and 2.4,
respectively. The Bonferroni mixing function ignores correlations among the test statistics whereas

‡Note that ‘reject H (I )’ in (4) refers to the local test of H (I ) taken in isolation. As P is a closed procedure, H (I ) can
be rejected iff all H (J ) for J ⊇ I are rejected.
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the parametric mixing function takes them into account by assuming a joint distribution for the test
statistics.

Computation of local p-values for the intersection hypotheses in the closed family depends on the
property of �-consistency [27, 28], which states that the rejection region for each local test must be
monotonically nondecreasing in �∈ (0,1). It can be seen from (7) that �-consistency is guaranteed if
�c(I1, I2|�) is nondecreasing in �. We will explain why the procedures used in the examples discussed
in the sequel are �-consistent. The general problem of �-consistency will be addressed in a follow-up
paper.

When the �-consistency condition is satisfied, local p-values are computed as follows. Let p(I )
denote the p-value for H (I ). Noting that p(I ) is the smallest � at which H (I ) can be rejected, we
see that if I = Ii then p(I )= pi (Ii ) for i =1,2 regardless of the type of mixing function used. If
I = I1 ∪ I2, where I1 and I2 are both nonempty subsets, one must numerically find the smallest � such
that �I (p1(I1), p2(I2))��. Note that since 0<�I (p1(I1), p2(I2))<1, the inequality (5) is satisfied for
�=1 but not for �=0. Therefore a smallest � that satisfies (5) always exists. In the special case when
c(I1, I2|�) does not depend on � we can simply set

p(I )=�I (p1(I1), p2(I2)).

Once the local p-values for all the intersection hypotheses are computed, the adjusted p-value of any
Hi can be computed from

p̃i =max
I :i∈I

p(I ),

where the maximum is taken over all index sets I that include i , i ∈ K . The mixture procedure P
rejects the null hypothesis Hi , i ∈ I , iff p̃i��.

2.2. Bonferroni mixing function

Consider an intersection hypothesis H (I ), where I = I1 ∪ I2 and I1 and I2 are nonempty index sets
corresponding to the null hypotheses from F1 and F2 included in H (I ). The Bonferroni mixing function
uses c(I1, I2|�)=1−e1(I1|�)/�, which is independent of I2. We thus have

�I (p1(I1), p2(I2))=min

(
p1(I1),

p2(I2)

1−e1(I1|�)/�

)
. (8)

By the Bonferroni inequality and the definition of the error rate function

P{�I (p1(I1), p2(I2))��|H (I )} = P{p1(I1)�� or p2(I2)��c(I1, I2|�)|H (I )}
� P{p1(I1)��|H (I1)}+ P{p2(I2)��[1−e1(I1|�)/�]|H (I2)}
� e1(I1|�)+�[1−e1(I1|�)/�]

= �

and thus (5) is satisfied. Note that if P1 is the Bonferroni procedure then e1(I1|�)=|I1|�/n1 and hence
c(I1, I2|�)=1−|I1|/n1, which is independent of both I2 and �; we denote it by c(I1).

Note that since the error rate function is a monotone function of its argument, as the index set I1
gets bigger, e1(I1|�) increases. In other words, with the increasing number of primary null hypotheses
included in H (I ), the primary component procedure P1 consumes a larger fraction of �. As a result,
a smaller fraction of � can be allocated to the secondary null hypotheses. This �-allocation scheme is
conceptually similar to that in [12] for calculating �2 from �1 =�. Furthermore, if I1 = K1, we have
e1(K1|�)=� and thus �I (p1(K1), p2(I2))= p1(K1) for any index set I2 ⊆ K2. This is an important
property which translates into the parallel gatekeeping restriction, i.e. all secondary null hypotheses are
automatically accepted whenever all primary null hypotheses are accepted. A detailed treatment of the
conditions that guarantee the parallel gatekeeping restriction will be provided in a follow-up paper.

2.3. Nonparametric mixture procedure

We now illustrate the Bonferroni mixing function in the special case of the schizophrenia trial example
with parallel gatekeeping restrictions for which k1 =k2 =2. There are four null hypotheses in this
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Table I. Index sets and local p-values for the nonparametric mixture procedure (mixture of the
Bonferroni and Holm procedures based on the Bonferroni mixing function) in the schizophrenia trial
example with parallel gatekeeping restrictions.

Index set Coefficient Local

I I1 I2 c(I1)∗ p-value (p(I ))

{1,2,3,4} {1,2} {3,4} — 2min(p1, p2)
{1,2,3} {1,2} {3} — 2min(p1, p2)
{1,2,4} {1,2} {4} — 2min(p1, p2)
{1,2} {1,2} ∅ — 2min(p1, p2)
{1,3,4} {1} {3,4} 0.5 2min(p1,2min(p3, p4))
{1,3} {1} {3} 0.5 2min(p1, p3)
{1,4} {1} {4} 0.5 2min(p1, p4)
{1} {1} ∅ — 2p1
{2,3,4} {2} {3,4} 0.5 2min(p2,2min(p3, p4))
{2,3} {2} {3} 0.5 2min(p2, p3)
{2,4} {2} {4} 0.5 2min(p2, p4)
{2} {2} ∅ — 2p2
{3,4} ∅ {3,4} — 2min(p3, p4)
{3} ∅ {3} — p3
{4} ∅ {4} — p4
∗In cases where p(I )= p1(I1) or p(I )= p2(I2) (e.g. when I = I1 or I = I2 or I1 = K1) we do not need to
specify c(I1) since the mixing function (7) is not used to compute p(I ).

example grouped into two families: F1 ={H1, H2} and F2 ={H3, H4}. The 15 intersection hypotheses
in the associated closed family and the index sets I1 and I2 for each intersection hypothesis are shown
in Table I. Define the index sets K1 ={1,2}, K2 ={3,4} and K ={1,2,3,4}. Let pi denote the raw
p-value for testing the null hypothesis Hi (1�i�4).

We will define a nonparametric mixture procedure with P1 being the Bonferroni procedure and
P2 being the Holm procedure. Numerical illustration for calculations of the adjusted p-values for this
nonparametric mixture procedure is given in Example 1 (Section 2.6). To set up this nonparametric
mixture procedure, we first need to compute the local p-values for the two-component procedures, i.e.
p1(I1) for the Bonferroni procedure and p2(I2) for the Holm procedure. The local p-values for the
Bonferroni procedure are given by

p1(I1)=

⎧⎪⎪⎨⎪⎪⎩
2min(p1, p2) if I1 ={1,2},
2p1 if I1 ={1},
2p2 if I1 ={2}.

Using (3), the local p-values for the Holm procedure are given by

p2(I2)=

⎧⎪⎪⎨⎪⎪⎩
2min(p3, p4) if I2 ={3,4},
p3 if I2 ={3},
p4 if I2 ={4}.

Next we show how to compute the local p-values for the nonparametric mixture procedure. Choose
an arbitrary nonempty subset I of K . If I = I1 or I2 then p(I )= p1(I1) or p2(I2), respectively, as noted
before. If I = I1 ∪ I2 and both I1 and I2 are nonempty then we use the Bonferroni mixing function (8)
to calculate the local p-value p(I ). Here, we have

c(I1)=1− e1(I1|�)

�
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if I1 =∅,

1
2 if I1 ={1},{2},
0 if I1 ={1,2}.
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As c(I1) is independent of �, we can set p(I )=�I (p1(I1), p2(I2)), thus yielding

p(I )=

⎧⎪⎨⎪⎩
2min(p1, p2) if I1 ={1,2}, I2 ={3,4},{3},{4},
2min(pi ,2min(p3, p4)) if I1 ={i}, i =1,2, I2 ={3,4},
2min(pi , p j ) if I1 ={i}, i =1,2, I2 ={ j}, j =3,4.

These calculations are summarized in Table I, which displays all 15 intersection hypotheses with
the associated index sets I , I1, I2 and the p(I )-values.

It can be shown that the nonparametric mixture procedure is equivalent to the general parallel
gatekeeping procedure proposed in [12] in which the primary family is tested using the Bonferroni
procedure at level �1 =� and the secondary family is tested using the Holm procedure at level

�2 =�1 −e1(I1|�1).

Here I1 is the set of accepted hypotheses from F1 and e1(I1|�)=|I1|�/2 is the error rate function of
the Bonferroni procedure.

2.4. Parametric mixing function

To specify a parametric mixing function, we need to specify a joint distribution for the test statistics.
We assume that t-statistics, denoted by ti , are used to test the null hypotheses Hi (1�i�k). Further
suppose that under the overall null hypothesis H (K )=⋂k

i=1 Hi , (t1, . . . , tk) has a k-variate t-distribution
with � degrees of freedom (d.f.) and known correlation matrix R ={�ij}, where �ij is the correlation
coefficient between the numerators of ti and t j .

Suppose that P1 is the Dunnett procedure and P2 is the step-down Dunnett procedure. The Dunnett
procedure tests and rejects any intersection hypothesis H (I1) at level � if

t1(I1)=max
i∈I1

ti>d1(�),

where d1(�) is the upper � critical point of the null distribution of t1(K1). The step-down Dunnett
procedure, on the other hand, being a shortcut to the closed procedure that uses the Dunnett procedure
at level � to test each intersection hypothesis, rejects any intersection hypothesis H (I2) at level � if

t2(I2)=max
i∈I2

ti>d2(�),

where d2(�) is the upper � critical point of the null distribution of t2(I2) (and thus varies with I2). To
make the local test (5) of H (I ) of level � using the mixing function (7), c(I1, I2|�) must satisfy the
following equation:

P{�I (p1(I1), p2(I2))��|H (I )} = P{p1(I1)�� or p2(I2)�c(I1, I2|�)�|H (I )}
= P{t1(I1)�d1(�) or t2(I2)�d2(c(I1, I2|�)�)|H (I )}
= �. (9)

As in the nonparametric case considered in Section 2.2, it is easy to verify that the parametric
mixing function incorporates the parallel gatekeeping restriction. Indeed, P{p1(K1)��}=� due to the
assumptions on the error rate function of P1 and thus c(K1, I2|�)=0 for any �. This implies that
�I (p1(K1), p2(I2))= p1(K1) and thus no secondary null hypotheses can be rejected if all primary null
hypotheses are accepted.

2.5. Parametric mixture procedure

Parametric mixing function will be illustrated for the same special case, k1 =k2 =2, considered in
Section 2.3 for the nonparametric mixture procedure. To define the test statistics in this case, let n0,
n1 and n2 denote the total sample sizes for the placebo and the two dose groups, respectively, in the
general population and let n′

0, n′
1 and n′

2 denote the corresponding subsample sizes restricted to the
classifier-positive subpopulation. We assume that all sample and subsample sizes are fixed by design and
the patient responses are independent normal with a common variance. Let �̂i and �̂

′
i be the estimates of

the true dose effects �i and �′
i (i =1,2), in the general and classifier-positive population, respectively.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1473--1488

1479



A. DMITRIENKO AND A. C. TAMHANE

Further let s2 denote the pooled estimate of the common variance based on �=n0 +n1 +n2 −3 d.f. Let

v0 =1/
√

n0, v′
0 =1/

√
n′

0, vi =
√

1/n0 +1/ni and v′
i =

√
1/n′

0 +1/n′
i (i =1,2). Then the t-statistics for

testing the null hypotheses Hi (1�i�4) are given by

t1 = �̂1

sv1
, t2 = �̂2

sv2
, t3 = �̂

′
1

sv′
1
, t4 = �̂

′
2

sv′
2
.

It is straightforward to show that, when all four null hypotheses are true, (t1, t2, t3, t4) has a central
4-variate t-distribution with � d.f. and correlation matrix R ={�ij} whose elements are

�12 = v2
0

v1v2
, �13 = v2

1

v1v
′
1
, �14 = v2

0

v1v
′
2
,

�23 = v2
0

v2v
′
1
, �24 = v2

2

v1v
′
2
, �34 = v′2

0

v′
1v

′
2
.

(10)

Thus all the correlations are known, being simple functions of the sample and subsample sizes.
The test statistics for testing H (I1) is ti if I1 ={i} for i =1,2 and max(t1, t2) if I1 ={1,2}. Similarly,

the test statistics for testing H (I2) is t j if I2 ={ j} for j =3,4 and max(t3, t4) if I2 ={3,4}. Denoting the
c.d.f. of the univariate t-distribution with � d.f. by F1(t |�) and that of max(ti , t j ) under Hi ∩ Hj (where
(ti , t j ) has a central bivariate t-distribution with � d.f. and correlation coefficient �ij) by F2(t |�,�ij), the
local p-values for H (I1) and H (I2) are given by

p1(I1)=
{

1− F2(ti |�,�12) if I1 ={i}, i =1,2,

1− F2(max(t1, t2)|�,�12) if I1 ={1,2}
and

p2(I2)=
{

1− F1(t j |�) if I1 ={ j}, j =3,4,

1− F2(max(t3, t4)|�,�34) if I1 ={3,4}.
The common critical value used to test all intersection hypotheses H (I1) is d1(�)= t∗2 (�|�,�12)=

F−1
2 (1−�|�,�12). The critical value used to test H (I2) depends on the index set I2. If I2 ={ j} ( j =3,4)

then d2(�)= t∗1 (�|�)= F−1
1 (1−�|�) and if I2 ={3,4} then d2(�)= t∗2 (�|�,�34).

As before, p(I )= p1(I1) or p2(I2) if I = I1 or I2, respectively. If the intersection hypothesis H (I )
contains both primary and secondary null hypotheses then we need to find c(I1, I2|�) in order to
calculate p(I ). The coefficients c(I1, I2|�) are obtained by solving the following equations:

• If I1 ={i}, i =1,2, I2 ={ j}, j =3,4 then

P{ti�t∗2 (�|�,�12) or t j�t∗1 (c(I1, I2|�)�|�)}=�. (11)

• If I1 ={i}, i =1,2, I2 ={3,4} then

P{ti�t∗2 (�|�,�12) or max(t3, t4)�t∗2 (c(I1, I2|�)�|�,�34)}=�. (12)

We have numerically checked that �c(I1, I2|�) is nondecreasing in � in the cases displayed above,
which immediately implies that the �-consistency condition is met for this mixture procedure.

2.6. Examples

Example 1 (Nonparametric and parametric mixture procedures for the schizophrenia trial)

Assume that the sample size per dose group (placebo, low dose and high dose) is 300 patients and
the size of the classifier-positive subpopulation is 100 patients per dose group. Further assume that
the t-statistics for testing the null hypotheses of no treatment effect in the general population and
classifier-positive subpopulation are given by t1 =2.04, t2 =2.46, t3 =2.22 and t4 =2.66 with 897 d.f.
The raw one-sided p-values for the four null hypotheses computed from these t-statistics are p1 =0.021,
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p2 =0.007, p3 =0.013 and p4 =0.004. The correlation coefficients of the 4-variate t-distribution can
be calculated using (10) as follows:

�12 = 1

2
, �13 = 1√

3
, �14 = 1

2
√

3
, �23 = 1

2
√

3
, �24 = 1√

3
, �34 = 1

2
.

Beginning with the nonparametric mixture procedure introduced in Section 2.3, we first calculate
the local p(I )-values for all intersection hypotheses by substitution in Table I. The p(I )-values are
displayed in Table II. Recall that the adjusted p-values for the individual Hi ’s are set equal to the
maximum of the p(I )-values for which i ∈ I following the closure principle. The adjusted p-values for
the four null hypotheses are listed in Table III. For example, the adjusted p-value for H2 is given by

p̃2 = max(p({1,2,3,4}), p({1,2,3}), p({1,2,4}), p({1,2}), p({2,3,4}), p({2,3}), p({2,4}), p({2}))
= 0.014.

Using the one-sided �=0.025, the mixture procedure rejects the null hypothesis H2 and thus establishes
superiority of the high dose versus placebo in the general population. Note, however, that there is
no evidence of efficacy at the low dose. As the primary family serves a parallel gatekeeper for the
secondary family, we can pass the gatekeeper and proceed toward testing the null hypotheses of no
treatment effect in the subpopulation, i.e. H3 and H4. The mixture procedure barely fails to reject H3
but rejects H4 and thus we conclude that the high dose is also significantly different from the placebo
in the subpopulation of classifier-positive patients.

Next we turn to the parametric mixture procedure defined in Section 2.5. The c(I1, I2)-values are
calculated from (11) and (12). As the �-consistency is satisfied in this case, the p(I )-values were

Table II. Local p(I )-values∗ for the nonparametric mixture procedure (mixture of the Bonferroni and
Holm procedures based on the Bonferroni mixing function) and parametric mixture procedure (mixture
of the single-step Dunnett and step-down Dunnett procedures based on the parametric mixing function)
in the schizophrenia trial example with parallel gatekeeping restrictions.

Index set I Nonparametric mixture procedure Parametric mixture procedure

{1,2,3,4} 0.014 0.013
{1,2,3} 0.014 0.013
{1,2,4} 0.014 0.013
{1,2} 0.014 0.013
{1,3,4} 0.016 0.015
{1,3} 0.027 0.025
{1,4} 0.008 0.008
{1} 0.042 0.038
{2,3,4} 0.014 0.013
{2,3} 0.014 0.013
{2,4} 0.008 0.008
{2} 0.014 0.013
{3,4} 0.008 0.008
{3} 0.013 0.013
{4} 0.004 0.004
∗The raw one-sided p-values for the four null hypotheses are p1 =0.021, p2 =0.007, p3 =0.013, p4 =0.004.

Table III. Raw and adjusted p-values produced by the nonparametric mixture procedure (mixture
of the Bonferroni and Holm procedures based on the Bonferroni mixing function) and parametric
mixture procedure (mixture of the single-step Dunnett and step-down Dunnett procedures based on the
parametric mixing function) in the schizophrenia trial example with parallel gatekeeping restrictions.

Adjusted p-value

Family Null hypothesis Raw p-value Nonparametric mixture procedure Parametric mixture procedure

F1 H1 0.021 0.042 0.038
H2 0.007 0.014∗ 0.013∗

F2 H3 0.013 0.027 0.025∗
H4 0.004 0.016∗ 0.015∗

∗Identifies the adjusted p-values that are significant at the one-sided 0.025 level.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1473--1488

1481



A. DMITRIENKO AND A. C. TAMHANE

computed using the method defined at the end of Section 2.1. These p(I )-values are shown in Table II.
The resulting adjusted p-values (given in Table III) are no larger than those for the nonparametric
mixture procedure. As in the nonparametric case, the mixture procedure passes the parallel gatekeeper
due to a significant outcome for the null hypothesis H2 and, in the secondary family, it barely rejects
H3 in addition to H4. Thus, the parametric procedure is able to declare a significant difference also
for the low dose in the subpopulation. In general, the parametric mixture procedure will be uniformly
more powerful than the nonparametric mixture procedure due to the fact that it makes use of the joint
distribution of the test statistics within each family and also across the families.

The local and adjusted p-values in this example were computed using R programs that can be
downloaded from www.multxpert.com.

Example 2 (A parametric mixture procedure in a trial with multiple primary and secondary endpoints)

Consider a parallel-group clinical trial for evaluating the efficacy of a single dose of a treatment
compared to a placebo with k1 primary and k2 secondary endpoints with k =k1 +k2. F1 and F2 consist
of the null hypotheses on the primary and secondary endpoints, respectively. The primary family serves
as a parallel gatekeeper for the secondary family.

Assume that n0 patients are enrolled in the placebo group and n1 patients in the treatment group and
let v=√

1/n0 +1/n1. Assume further that the responses in the trial are normally distributed and let
�̂i denote the sample estimate of the true treatment difference �i on the i th endpoint. This estimate is
distributed as N(�i ,v

2�2
i ), where �2

i is the variance of the individual observations on the i th endpoint.
Let �ij be the correlation coefficient between the i th and j th endpoints (1�i< j�k), which is also the

correlation between �̂i and �̂ j . Denoting by s2
i the sample estimate of �2

i with �=n0 +n1 −2 d.f., the
test statistics for the i th endpoint is given by

ti = �̂i

siv
(1�i�k).

To define a mixture procedure based on the parametric mixing function in this example, we need
to define local p-values for all intersection hypotheses in the closed family associated with the k null
hypotheses. To test the intersection hypotheses H (I1), I1 ⊆ K1, and H (I2), I2 ⊆ K2, we may use the
union-intersection statistics

t1(I1)=max
i∈I1

ti , t2(I2)=max
i∈I2

ti .

Note that under Hi the marginal distribution of ti follows the t-distribution with � d.f., but the joint
distribution of the ti ’s (1�i�k) is not multivariate t because different denominators si , which are
correlated, are used for the ti . This distribution may be called the generalized multivariate t , which
was studied for the bivariate case by Siddiqui [29]. In general, this distribution is difficult to evaluate.
The difficulty is further compounded by the fact that the correlations �ij are unknown. Therefore the
probability in (9) needs to be evaluated via resampling. We do not pursue further discussion of the
details of resampling as it is not germane to the topic of this paper.

3. Mixture procedures for general logical restrictions

To motivate general logical restrictions among the null hypotheses consider the following example. A
parallel-group clinical trial for an anti-hypertensive treatment is designed to evaluate the efficacy of
two doses (Dose 1: low dose; Dose 2: high dose) versus an active control. Assume that the primary
outcome variable in the trial is normally distributed and �1 and �2 denote the true differences between
the two dose means and the active control mean. Each dose is tested for noninferiority with respect to
the active control first and the superiority test is carried out after noninferiority is established. Thus the
primary family F1 consists of the noninferiority null hypotheses:

H1 :�1�−�, H2 :�2�−�, (13)

where �>0 is a prespecified noninferiority margin, and the secondary family F2 consists of the supe-
riority null hypotheses:

H3 :�1�0, H4 :�2�0. (14)
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Figure 2. Decision tree in the hypertension trial example with general gatekeeping restrictions (the secondary
null hypothesis H3 is tested iff the corresponding primary null hypothesis H1 is rejected and, similarly, H4 is

tested iff H2 is rejected).

The decision rules in this multiple testing problem are displayed in Figure 2. Note that the null
hypotheses in this problem do not have a simple serial or parallel logical relationship. For example, the
superiority null hypothesis for the first dose, i.e. H3 is tested only if H1 is rejected. This is an example
of tree-structured gatekeeping. We propose to handle such and more general logical relationships by
using what we call as restriction functions.

3.1. Restriction functions

In this section we will introduce a general method for defining logical relationships among the primary
and secondary null hypotheses which extends the class of tree-structured restrictions. As in Section 2,
define two families, F1 and F2 with index sets K1 and K2 and let K = K1 ∪K2. General logical restric-
tions mean that whether each secondary null hypothesis is nontestable (i.e. whether it is automatically
accepted without testing) or testable (i.e. whether it is to be tested and either accepted or rejected)
depends upon whether a specified condition on rejection of primary null hypotheses is met. (In the
general case of m>2 families, the testability of each hypothesis in Fi for i>1 depends upon whether
a specified condition on rejection of hypotheses in F1, . . . , Fi−1 is met.) Such a condition on rejection
of primary null hypotheses can be specified by an indicator function, L j (I1), that is defined on the
collection of all subsets I1 of K1 and for each secondary null hypothesis Hj , j ∈ K2. Assume that
the primary null hypotheses Hi , i ∈ I1, are accepted and Hi , i �∈ I1, are rejected. Then the restriction
function L j (I1) equals 0 if Hj is nontestable and L j (I1)=1 if Hj is testable.

We require that logical restrictions (and hence the corresponding restriction functions) satisfy the
following natural and important conditions:

• Monotonicity condition: If a secondary null hypothesis is not testable given a set of accepted
primary null hypotheses, it remains nontestable if more primary null hypotheses are accepted. In
other words, for any j ∈ K2, if L j (I1)=0 then L j (I ′

1)=0 for I1 ⊆ I ′
1 ⊆ K1.

• Parallel gatekeeping condition: All secondary null hypotheses are nontestable if all primary null
hypotheses are accepted, i.e. L j (K1)=0 for all j ∈ K2.

To demonstrate that the above method for defining logical relationships among the null hypotheses
is more general than the tree gatekeeping method, consider the following example. Suppose F1 =
{H1, H2, H3} and F2 ={H4} and H4 is testable only if at least two of the three null hypotheses in F1
are rejected. For instance, F1 may refer to three primary endpoints and F2 may refer to a secondary
endpoint and the secondary endpoint will be tested only if the treatment shows a significant effect
on at least two out of the three primary endpoints. This logical restriction cannot be modeled in the
tree-structured gatekeeping framework; however, it is easily defined using the restriction functions
introduced above. Specifically, the restriction function for H4 is given by: L4({1,2})= L4({1,3})=
L4({2,3})= L4({1,2,3})=0 and L4(∅)= L4({1})= L4({2})= L4({3})=1.

To define a mixture procedure for multiple testing problems with general logical restrictions, we will
use a method very similar to that described in Section 2. Consider the closed family associated with
the combined family F and let I be a nonempty subset of K such that I = I1 ∪ I2, where I1 ⊆ K1 and
I2 ⊆ K2. Furthermore, let I ∗

2 be the restricted secondary index set of testable secondary null hypotheses
from I2 under the assumption that Hi , i ∈ I1, are accepted. In other words, I ∗

2 ={ j ∈ I2 : L j (I1)=1}.
The mixture procedure P is defined as a closed procedure based on the following local tests of level �:

Reject H (I ) if

{
pi (Ii )�� if I = Ii (i =1,2) or I ∗

2 is empty,

�I (p1(I1), p2(I ∗
2 ))�� if I = I1 ∪ I2, I1 and I ∗

2 are nonempty.
(15)
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Table IV. Index sets, restriction functions and local p-values for the nonparametric mixture procedure
(mixture of the Bonferroni and Holm procedures based on the Bonferroni mixing function) in the
hypertension trial example with general gatekeeping restrictions.

Index set Restriction function
Local

I I1 I2 I∗
2 L3(I1)∗ L4(I1)∗ p-value (p(I ))

{1,2,3,4} {1,2} {3,4} ∅ 0 0 2min(p1, p2)
{1,2,3} {1,2} {3} ∅ 0 — 2min(p1, p2)
{1,2,4} {1,2} {4} ∅ — 0 2min(p1, p2)
{1,2} {1,2} ∅ ∅ — — 2min(p1, p2)
{1,3,4} {1} {3,4} {4} 0 1 2min(p1, p4)
{1,3} {1} {3} ∅ 0 — 2p1
{1,4} {1} {4} {4} — 1 2min(p1, p4)
{1} {1} ∅ ∅ — — 2p1
{2,3,4} {2} {3,4} {3} 1 0 2min(p2, p3)
{2,3} {2} {3} {3} 1 — 2min(p2, p3)
{2,4} {2} {4} ∅ — 0 2p2
{2} {2} ∅ ∅ — — 2p2
{3,4} ∅ {3,4} {3,4} 1 1 2min(p3, p4)
{3} ∅ {3} {3} 1 — p3
{4} ∅ {4} {4} — 1 p4
∗The restriction functions L3(I1) and L4(I1) are defined only for the intersection hypotheses containing H3
and H4, respectively.

Given the local tests, the local p-values for the intersection hypotheses in the closed family and
adjusted p-values for the null hypotheses are computed using the algorithms defined in Section 2.1.

3.2. Nonparametric mixture procedure

To illustrate the process of applying logical restrictions, consider the hypertension trial example. In this
example there are four null hypotheses. F1 ={H1, H2} is the family of noninferiority null hypotheses
and F2 ={H3, H4} is the family of superiority null hypotheses. The 15 intersection hypotheses and the
index sets I1 and I2 are listed in Table IV. This table also shows the restriction functions L3(I1) and
L4(I1) and restricted secondary index sets I ∗

2 .
As in Section 2.3, consider a nonparametric mixture procedure based on the Bonferroni mixing

function that uses the Bonferroni procedure as P1 and the Holm procedure as P2. Let pi denote the
raw p-value for testing the null hypothesis Hi (1�i�4). The local p-values, p1(I1) and p2(I2) which
equal p(I ) if I = I1 or I2, respectively, are the same as those given in Section 2.3; the c(I1)-values are
also the same as given there.

To calculate the p(I )-values when null hypotheses from both families are part of an intersection
hypothesis, we need to specify the restriction functions. The first four intersection hypotheses in Table IV
contain both primary null hypotheses and thus both L3(I1) and L4(I1) are equal to 0. This implies that
I ∗
2 , the set of testable secondary null hypotheses, is empty. As a result, the local p-values for these

intersection hypotheses are based only on the primary p-value, i.e. p(I )= p1({1,2})=2min(p1, p2) for
all four H (I ). This definition of the local p-value ensures that the secondary null hypotheses cannot
be tested if both primary null hypotheses are accepted.

Furthermore, consider the intersection hypotheses containing one primary null hypothesis and at
least one secondary null hypothesis. In this case, if an intersection hypothesis includes H1, we exclude
H3 from the secondary index set (i.e. set L3(I1)=0); similarly, if an intersection hypothesis includes
H2 then we exclude H4. Consider, for example, the intersection hypothesis H (I ) with I ={1,3,4}.
Even though I2 ={3,4}, the restricted secondary index set I ∗

2 is set to {4}. As P1 is the Bonferroni
procedure, c({1})=1/2 and the associated local p-value equals

p(I )= p({1,3,4})=�I (p1({1}), p2({4}))=min(2p1, p4/(1/2))=2min(p1, p4),

which does not depend on p3. The local p-values calculated in this way for all intersection hypotheses
are given in Table IV. The resulting decision rule is consistent with the logical restriction defined above,
e.g. the mixture procedure cannot reject H3 if H1 is accepted.
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3.3. Parametric mixture procedure

Given that the data are normally distributed and homoscedastic in the hypertension trial example, we
can also construct a parametric mixture procedure which takes into account the joint distribution of the
four test statistics. This mixture procedure is similar to the one introduced in Section 2.5, i.e. it is also
based on the parametric mixing function and uses the single-step Dunnett procedure in the primary
family and the step-down Dunnett procedure in the secondary family.

Let n0, n1 and n2 denote the total sample sizes in the placebo and the two dose groups, respectively,
and let �̂i denote the sample estimate of the true mean difference between the i th dose and the
control. This sample estimate is normally distributed with variance v2

i �2, where �2 is the variance of
the individual observations and vi =

√
1/n0 +1/ni (i =1,2). If s2 denotes the sample estimate of �2

with �=n0 +n1 +n2 −3 d.f., the test statistics for the noninferiority and superiority null hypotheses is
given by

t1 = �̂1 +�

sv1
, t2 = �̂2 +�

sv2
, t3 = �̂1

sv1
, t4 = �̂2

sv2
.

Both (t1, t2) and (t3, t4) have bivariate t-distributions with � d.f. and correlation coefficient

�=
√

n1n2

(n0 +n1)(n0 +n2)
.

Furthermore, the pairs (t1, t3) and (t2, t4) have correlation 1 and the pairs (t1, t4) and (t2, t3) have
correlation �. Thus this is a fully specified 4-variate t-distribution.

As P1 and P2 are the same as those in the schizophrenia trial example, the local p-values for the
intersection hypotheses that contain only the primary or secondary null hypotheses are also the same
as those given in Section 2.5. Next, consider the intersection hypotheses containing both primary and
secondary null hypotheses. The computation of local p-values for these intersection hypotheses is based
on the method introduced in Section 2.5 with minor modifications to account for the logical restrictions.
For example, consider the intersection hypothesis H (I ) with I ={1,3,4}. In this case, I1 ={1} and
I ∗
2 ={4}. The local p-values for H (I1) and H (I ∗

2 ) are given by

p1(I1)=1− F2(t1|�,�), p2(I ∗
2 )=1− F1(t4|�).

Analogous to (11), the coefficient c(I1, I ∗
2 |�) can be found from the equation:

P{t1�t∗2 (�|�,�) or t4�t∗1 (c(I1, I ∗
2 |�)�|�)}=�,

where t1 and t4 follow a bivariate t-distribution with � d.f. and correlation coefficient �. The �-
consistency is satisfied in this case and the local p-value for the selected intersection hypothesis is
given by the smallest � for which

min

(
p1(I1),

p2(I ∗
2 )

c(I1, I ∗
2 |�)

)
��.

3.4. Example 3 (Nonparametric and parametric mixture procedures for the hypertension trial)

Suppose that the hypertension trial is conducted with 200 patients on each of the three arms (active
control, low dose and high dose). Assume that the t-statistics for the four null hypotheses are given
by t1 =1.90, t2 =2.26, t3 =1.87 and t4 =2.23 with 597 d.f. The corresponding raw p-values equal
p1 =0.029, p2 =0.012, p3 =0.031 and p4 =0.013. The correlation coefficient � equals 1/2.

The local p(I )-values for all intersection hypotheses for the nonparametric mixture procedure intro-
duced in Section 3.2 are obtained by simple substitutions in Table IV. The results are listed in Table V
from which the adjusted p-values for the four null hypotheses are obtained by the closure method as
illustrated in Example 1 (Section 2.6). These adjusted p-values are listed in Table VI. If the one-sided
� is set to 0.025 then the nonparametric mixture procedure rejects only H2 in the primary family, i.e.
if noninferiority is established at the high dose but cannot be established at the low dose. As H1 is not
rejected, the null hypothesis H3 becomes non-testable due to the logical restrictions defined in Table IV
(there is no sense in carrying out a superiority test if there is no evidence of noninferiority) and we
focus on testing H4 in the secondary family. However, the mixture procedure cannot reject this null
hypothesis and thus superiority cannot be shown at either dose.
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Table V. Local p-values∗ for the nonparametric mixture procedure (mixture of the Bonferroni and
Holm procedures based on the Bonferroni mixing function) and parametric mixture procedure (mixture
of the single-step Dunnett and step-down Dunnett procedures based on the parametric mixing function)
in the hypertension trial example with general gatekeeping restrictions.

Index set I Nonparametric mixture procedure Parametric mixture procedure

{1,2,3,4} 0.024 0.022
{1,2,3} 0.024 0.022
{1,2,4} 0.024 0.022
{1,2} 0.024 0.022
{1,3,4} 0.026 0.025
{1,3} 0.058 0.052
{1,4} 0.026 0.025
{1} 0.058 0.052
{2,3,4} 0.024 0.022
{2,3} 0.024 0.022
{2,4} 0.024 0.022
{2} 0.024 0.022
{3,4} 0.026 0.025
{3} 0.031 0.031
{4} 0.013 0.013
∗The raw one-sided p-values for the four null hypotheses are p1 =0.029, p2 =0.012, p3 =0.031, p4 =0.013.

Table VI. Raw and adjusted p-values produced by the nonparametric mixture procedure (mixture
of the Bonferroni and Holm procedures based on the Bonferroni mixing function) and parametric
mixture procedure (mixture of the single-step Dunnett and step-down Dunnett procedures based on the
parametric mixing function) in the hypertension trial example with general gatekeeping restrictions.

Adjusted p-value

Nonparametric Parametric
Family Null hypothesis Raw p-value mixture procedure mixture procedure

F1 H1 0.029 0.058 0.052
H2 0.012 0.024∗ 0.023∗

F2 H3 0.031 0.058 0.052
H4 0.013 0.026 0.025∗

∗Identifies the adjusted p-values that are significant at the one-sided 0.025 level.

Turning to the parametric mixture procedure from Section 3.3, the c(I1, I ∗
2 |�)-values are calculated

in the same way as in Example 1. The p(I )-values for all intersection hypotheses are listed in Table
V and the adjusted p-values for the four null hypotheses computed from these p(I )-values are given
in Table VI. As in Example 1, the adjusted p-values generated by the parametric mixture procedure
are smaller than those for the nonparametric mixture procedure, which again illustrates the higher
power of the parametric approach. The parametric mixture procedure rejects only one null hypothesis
in the primary family (H2) and, given that H3 is non-testable, proceeds to testing H4 in the secondary
family. This null hypothesis is rejected and thus the parametric mixture procedure establishes not
only the noninferiority but also the superiority of the high dose. The local and adjusted p-values
in the hypertension trial example were computed using R programs that can be downloaded from
www.multxpert.com.

4. Concluding remarks

This paper introduces a unified approach to constructing multiple testing procedures for addressing
multiplicity issues arising in clinical trials with multiple families of null hypotheses. The objectives
considered in trials of thess kinds are often interrelated and we consider a very general framework of
hierarchical objectives based on a new method for defining logical restrictions among individual null
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hypotheses. In addition, this paper introduces a novel method for setting up gatekeeping procedures for
the overall family of null hypotheses based on a mixture of procedures defined within each individual
family. As shown in the paper, this mixture method serves as a versatile tool for constructing powerful
gatekeeping procedures. This paper gives several examples of gatekeeping procedures, including para-
metric mixture procedures for trials with parallel gatekeeping restrictions (Examples 1 and 2 in Section 2)
and mixture procedures for trials with general gatekeeping restrictions (Example 3 in Section 3). These
procedures enable trial sponsors to enrich product labels by including the results of multiple clinically
relevant analyses while controlling the familywise error rate in the strong sense.
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